Abstract
ZnO-coated TiO2 (ZTO) thin films were deposited on ITO substrates by a sol–gel method for application as the work electrode for dye-sensitized solar cells (DSSCs). The I–V curve and the incident photon-to-current conversion efficiency (IPCE) value of DSSCs for ZTO thin films were studied and compared with single TiO2 films. The results show that the short-circuit photocurrent (J sc) and open-circuit voltage (V oc) values increased from 3.7 mA/cm2 and 0.68 V for the DSSCs with a single TiO2 film to 4.5 mA/cm2 and 0.72 V, respectively, for the DSSCs with a ZTO thin film. It indicated that the DSSCs with a ZTO thin film contributed to provide an inherent energy barrier that suppressed charge recombination significantly. In addition, the higher IPCE value in the ZTO thin film is attributed to the better charge separation by a fast electron transfer process using two semiconductors with different conduction band edges and energy positions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.