Abstract

A series of (Mg1-xZnx)3(PO4)2 (x = 0.02–0.10) microwave dielectric ceramics were fabricated by the solid-state reaction method and investigated in terms of crystal structure, chemical bond properties, and dielectric properties were analyzed. The XRD data indicates that (Mg1-xZnx)3(PO4)2 samples belong to the monoclinic crystal with P21/c space group and no detectable secondary phases. The Rietveld refinement was employed to obtain crystal parameters. In addition, the results of chemical bond properties reveal that the lattice energy and ionicity of Mg (2)–O (3) bonds play a primary effect on the dielectric loss and dielectric constant, respectively. The bond energy of Mg(l)-O (2) bonds plays a dominant role in thermal stability. The far-infrared spectroscopy was employed to explore the intrinsic dielectric parameters, and the results showed that peaks below 400 cm-l contributed 78.9 % to ε′ and 99.1 % to ε″. The Raman data demonstrated that the Raman shift and FWHM exhibit an important influence on Q × f. The optimal performance was achieved in (Mg0.94Zn0.06)3(PO4)2 ceramics: εr = 5.00, Q × f = 84,674 GHz, τf = −59.98 ppm/°C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.