Abstract
The microstructure resulting from Sn-3.5Ag soldering on an electroless Ni-P/Au pad using flux containing Zn(II) stearate was investigated. The content of zinc compound in the flux was 0 wt.% (Z-0), 20 wt.% (Z-20) or 50 wt.% (Z-50). A study of the interfacial microstructure revealed that both Z-20 and Z-50 fluxes yielded a thinner P-rich layer at the interface than did the Z-0 flux. In addition, compared with the bulky Ni–Sn intermetallics of the Z-0 joint interface, refined interfacial intermetallic compounds (IMCs) were observed when using Zn-containing fluxes, Z-20 and Z-50. Based on qualitative analyses of both Z-20 and Z-50 joint interfaces, it was presumed that their intermetallic layers would consist of Ni, Zn, and Sn. Additionally, the Ni content in the IMC layer of the Z-50 joint was lower than that of the Z-20 joint. Electron probe microanalysis (EPMA) of the initial Z-50 joint interface revealed Zn in the interfacial reaction layer, suggesting that Zn participated in the reaction between solder and the surface finish at an early stage of soldering. Consequently, the supply of Zn from the flux diminished Ni diffusion into the molten solder during heating. This effect may have caused a thin P-rich layer to form at the joint interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.