Abstract

Magnesium alloys have been regarded as potential degradable biomedical materials due to their suitable mechanical properties and excellent biocompatibility. In this study, Mg-Zn alloys were fabricated by powder metallurgy and then hot extruded. The effects of Zn concentration and heat treatment on their microstructure, mechanical properties and corrosion behavior were investigated. The compression test results showed that their mechanical properties were suitable for bone tissue engineering. The corrosion behavior of Mg-Zn alloys was analyzed by immersion tests and electrochemical tests in Ringer's solution. The results revealed that the increasing Zn concentration reduced the corrosion potential but increased corrosion current because severe micro-galvanic corrosion was caused by more large-size intermetallic phases. Although solid solution treatment could reduce intermetallic phase amounts, it caused micropores on the surface. And these micropores could resulted in the pitting corrosion and reduce the corrosion resistance. Notably, aging treatment could reduce the segregation of Zn and promote the compactness and uniformity of corrosion product layer on the surface, leading to the improvement of corrosion resistance. In addition, the as-extruded Mg-6%Zn alloy (wt.%) aged for 72 h was harmless to L-929 cells in cytotoxicity test. Consequently, the as-extruded Mg-Zn alloys prepared by powder metallurgy are promising to develop to be ideal biodegradable implants for bone tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.