Abstract
Commonly used equilibrium models for metal biouptake, such as the Free Ion Activity Model (FIAM) and the Biotic Ligand Model (BLM), are limited to the cases in which mass diffusive transport is not the flux-determining step. In analyses of metal biouptake from a complexing medium, all the physical (diffusion), chemical (dissociation kinetics of metal complexes), and biological (transport and internalization) processes have to be taken into account. A short-term zinc uptake by wheat (Triticum aestivum) roots from culture solutions in the absence or presence of synthetic ligands (NTA, nitrilotriacetic acid, and EDTA, ethylenediaminetetraacetate) was studied. At the same free Zn2+ concentration \(\left( {\left\{ {{\text{Zn}}^{{\text{2 + }}} } \right\} = 1.5 \times 10^{ - 8} {\text{M}}} \right)\) , the uptake of Zn was significantly enhanced in the presence of ligands and was larger when Zn complexes have a quicker dissociation rate. The diffusional fluxes in the same culture solution were determined with the differential pulse anodic stripping voltammetry (DPASV) method, and the diffusive gels in thin film (DGT) technique. The contribution from Zn complexes to root Zn uptake was in better agreement with the degree of Zn complex labilities measured with DPASV than with DGT. The diffusion of free Zn2+ ion to the root surface is a rate-controlling step for Zinc biouptake when the free Zn2+ concentration is low. Based on the comprehensive consideration of the diffusion and dissociation processes of Zn2+ ion and Zn complexes and the existence of high- and low-affinity uptake systems in the root surface, a two-pathway Zn uptake model was developed to predict the resulting Zn uptake fluxes into roots in the overall range of exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.