Abstract

At present, the mechanical properties of the Mg–3Sn–2Ca magnesium alloy are not satisfying and further enhance needs to be considered via further alloying/microalloying additions. The effects of Zr addition on the as-cast microstructure and mechanical properties of the alloy were investigated by using optical and electron microscopies, differential scanning calorimetry (DSC) analysis, and tensile and creep tests. The results indicate that adding 0.41, 0.76 or 1.18wt.% Zr can refine the grains of the alloy, and the primary CaMgSn phases in the Zr-containing alloys are changed from coarse needle-like net to relatively fine short block and/or particle-like shapes. As a result, the tensile and/or creep properties of the Zr-containing alloys are improved. Among the Zr-containing alloys, the alloy with the addition of 0.76wt.% Zr exhibits the relatively optimum mechanical properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.