Abstract
A study has been conducted to identify the influence of zirconia phase and copper to zirconia surface area on the activity of Cu/ZrO2 catalysts for the synthesis of methanol from either CO/H2 or CO2/H2. To determine the effects of zirconia phase, a pair of Cu/ZrO2 catalysts was prepared on tetragonal (t-) and monoclinic (m-) zirconia. The zirconia surface area and the Cu dispersion were essentially identical for these two catalysts. At 548 K, 0.65 MPa, and H2/COx= 3 (x = 1, 2), the catalyst prepared on m-ZrO2 was 4.5 times more active for methanol synthesis from CO2/H2 than that prepared on t-ZrO2, and 7.5 times more active when CO/H2 was used as the feed. Increasing the surface area of m-ZrO2 and the ratio of Cu to ZrO2 surface areas further increased the methanol synthesis activity. In situ infrared spectroscopy and transient-response experiments indicate that the higher rate of methanol synthesis from CO2/H2 over Cu/m-ZrO2 is due solely to the higher concentration of active intermediates. By contrast, the higher rate of methanol synthesis from CO/H2 is due to both a higher concentration of surface intermediates and the more rapid dynamics of their transformation over Cu/ZrO2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.