Abstract

Infants with hemolytic diseases frequently develop hyperbilirubinemia and are treated with phototherapy, which only eliminates bilirubin after its production. A better strategy might be to directly inhibit heme oxygenase (HO), the rate-limiting enzyme in bilirubin production. Metalloporphyrins (Mps) are heme analogs that competitively inhibit HO activity in vitro and in vivo and suppress plasma bilirubin levels in vivo. A promising Mp, zinc deuteroporphyrin bis glycol (ZnBG), is orally absorbed and effectively inhibits HO activity at relatively low doses. We determined the I(50) (the dose needed to inhibit HO activity by 50%) of orally administered ZnBG in vivo and then evaluated ZnBG's effects on in vivo bilirubin production, HO activity, HO protein levels, and HO-1 gene expression in newborn mice after heme loading, a model analogous to a hemolytic infant. The I(50) of ZnBG was found to be 4.0 μmol/kg body weight (BW). At a dose of 15 μmol/kg BW, ZnBG reduced in vivo bilirubin production, inhibited heme-induced liver HO activity and spleen HO activity to and below baseline, respectively, transiently induced liver and spleen HO-1 gene transcription, and induced liver and spleen HO-1 protein levels. We conclude that ZnBG may be an attractive compound for treating severe neonatal hyperbilirubinemia caused by hemolytic disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.