Abstract

The accumulation and amyloid formation of amyloid-β (Aβ) peptides is closely associated with the pathology of Alzheimer's disease. The physiological environment wherein Aβ aggregation happens is crowded with a large variety of metal ions including Zn2+. In this study, we investigated the role of Zn2+ in regulating the aggregation kinetics of Aβ40 peptide. Our results show that Zn2+ can shift a typical single sigmoidal aggregation kinetics of Aβ40 to a biphasic aggregation process. Zn2+ aids in initiating the rapid self-assembly of monomers to form oligomeric intermediates, which further grow into amyloid fibrils in the first aggregation phase. The presence of Zn2+ also retards the appearance of the second aggregation phase in a concentration dependent manner. In addition, our results show that a natural dipeptide, carnosine, can greatly alleviate the effect of Zn2+ on Aβ aggregation kinetics, most likely by coordinating with the metal ion to form chelates. These results suggest a potential in vivo protective effect of carnosine against the cytotoxicity of Aβ by suppressing Zn2+-induced rapid formation of Aβ oligomers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call