Abstract

The purpose of this experiment was to investigate the effects of 12.5 days of zero gravity (0 g) exposure (Cosmos 1887 Biosputnik) on the enzymatic properties, protein content, and isomyosin distribution of the myofibril fraction of the slow-twitch vastus intermedius (VI) and the fast-twitch vastus lateralis (VL) muscles of adult male rats. Measurements were obtained on three experimental groups (n = 5 each group) designated as flight group (FG), vivarium control (VC), and synchronous control (SC). Body weight of the FG was significantly lower than that of the two control groups (P less than 0.05). Compared with the two control groups, VI weight was lower by 23% (P less than 0.10), whereas no such pattern was apparent for the VL muscle. Myofibril yields (mg protein/g muscle) in the VI were 35% lower in the FG than in controls (P less than 0.05), whereas no such pattern was apparent for the VL muscle. When myofibril yields were expressed on a muscle basis (mg/g x muscle weight), the loss of myofibril protein was more exaggerated and suggests that myofibril protein degradation is an early event in the muscle atrophy response to 0 g. Analysis of myosin isoforms indicated that slow myosin (Sm) was the primary isoform lost in the calculated degradation of total myosin. No evidence of loss of the fast isomyosins was apparent for either muscle following spaceflight. Myofibril ATPase activity of the VI was increased in the FG compared with controls, which is consistent with the observation of preferential Sm degradation. These data suggest that muscles containing a high percentage of slow-twitch fibers undergo greater degrees of myofibril protein degradation than muscles containing predominantly fast-twitch fibers in response to a relatively short period of 0 g exposure, and the primary target appears to be the Sm molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.