Abstract

The study aimed to examine the effects of zearalenone on genital organ development, serum immunoglobulin, antioxidant capacity, sex hormones and liver function of prepubertal gilts. Forty-eight prepubertal gilts (Landrace × Yorkshire) were randomly divided into three treatment (T1, T2 and T3) groups and a control group (12 replicates per group, 1 gilt per replicate). Prepubertal gilts in the control group were fed with basal diet, and those in T1, T2 and T3 groups were fed with basal diets supplemented with 200 μg/kg, 800 μg/kg and 1600 μg/kg zearalenone during the experiment period, which lasted for 14 d. Feed intake was counted and vulvar area was measured. The blood samples were collected from the anterior vena cava of 6 prepubertal gilts in each group, and immunoglobulins, antioxidant indexes, inflammatory cytokines, genital hormones, and biochemical indexes were analyzed by enzyme-linked immunosorbent assay. The results showed that the average daily feed intake of prepubertal gilts in each group had no significant change (p > 0.05). On 14 d, compared with the control group, the vulva area of prepubertal gilts in each treatment group was significantly increased (p < 0.05). Compared with the control group, the serum immunoglobulin G content in the T3 group was significantly reduced (p < 0.05). The activities of total antioxidant capacity and the superoxide dismutase of serum in the T3 group were significantly reduced (p < 0.05). Compared with the control group, the serum interleukin-4 content in each test group were extremely significantly increased (p < 0.01). The serum contents of luteinizing hormone in the T2 and T3 groups and estradiol in the T3 group were significantly reduced (p < 0.05) than that of control group. Compared with the control group, the activity of aspartate aminotransferase in T3 group was significantly increased (p < 0.05). In conclusion, zearalenone has no significantly effect on the feed intake of prepubertal gilts, but it can reduce its serum immunoglobulin contents and antioxidant properties, disrupt the secretion of sex hormones, increase the vulva area, produce reproductive toxicity and cause liver damage. Therefore, in pig production, the use of antimould reagent together with products of immunity-boosting, antioxidant, anti-inflammatory and hepatoprotective may enhance protection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call