Abstract

The low bonding strength between hydroxyapatite (HA) and the metal substrate interface of plasma‐sprayed HA coating has been a point of potential weakness in its application as a biomedical prosthesis. In the present study, yttria‐stabilized (8 wt%) zirconia (YSZ) has been used to enhance the mechanical properties of HA coatings. The effects of YSZ additions (in the range 10–50 wt%) on the phase composition, microstructure, bond strength, elastic modulus, and fracture toughness of plasma‐sprayed HA/YSZ composite coatings have been studied. The results indicated that decomposition of HA during plasma spraying was reduced significantly with the addition of zirconia. The higher the zirconia content, the lower the amount of calcium oxide, tricalcium phosphate, and tetracalcium phosphate formed in the coatings. In addition, there was a trace of calcium zirconate formed when less than 30 wt% zirconia was present. A solid solution of HA mixed with YSZ formed during plasma spraying; however, the amount of unmelted particles increased as the zirconia increased. The mechanical properties of the HA/YSZ composite coatings, such as bond strength, elastic modulus, and fracture toughness, increased significantly as the contents of zirconia increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.