Abstract

Tension leveling is an important industrial process to eliminate the flatness defects and residual stresses of metal strips to provide high-quality sheet metals for subsequent sheet metal forming. The finite element (FE) method can be applied to elucidate the effects of process parameters on the quality of sheets after tension leveling for various materials. In our previous investigation, an accurate FE model has been established for the elastic–plastic FE analysis of tension leveling. In this study, we further studied the effects of the yield point and plastic anisotropy on tension leveling using the FE model established in our previous investigation. Aiming at improving the accuracy of simulation, a modified constitutive model was developed to describe the anisotropic hardening of materials under cyclic loading. The modified constitutive model was implemented into Abaqus/Standard as a user-defined material subroutine to simulate the development of the anisotropy in materials during tension leveling. The modified model was also applied to the FE analysis of sheet metal forming processes to demonstrate its simulation capability and accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.