Abstract

Monitoring substrate and cell concentration is important for controlling yeast propagation and fermentation processes. This usually requires two instruments, a density meter, and an optical turbidity meter. This paper presents a method for simultaneously determining yeast and maltose concentration with a single ultrasonic sensor. Ultrasonic velocity and attenuation were measured at varying maltose and yeast cell concentrations from 0 to 4 wt%. Ultrasonic velocity increased linearly with both yeast (R2 = 0.999) and maltose concentration (R2 = 0.996). In contrast, while attenuation coefficient depended linearly on yeast concentration (R2 = 0.998), it did not significantly depend on maltose concentration (R2 = 0.476). To draw conclusions about the main mechanisms of attenuation, the measured attenuation coefficients for yeast cells at 2 MHz were compared to predicted values. With a mean absolute percentage error of 0.25%, intrinsic absorption, thermal effects, and, to a lesser extent, viscous effects were identified as the main reason for damping. These results support the feasibility of combining ultrasonic velocity and attenuation measurements for estimating yeast cell and maltose concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.