Abstract

Xylitol is widely used as a sweetener in foods and medications. Xylitol ingestion causes a small blood glucose rise, and it is commonly used as an alternative to high-energy supplements in diabetics. In previous studies, a xylitol metabolite, xylulose-5-phosphate, was shown to activate carbohydrate response element binding protein, and to promote lipogenic enzyme gene transcription in vitro; however, the effects of xylitol in vivo are not understood. Here we investigated the effects of dietary xylitol on lipid metabolism and visceral fat accumulation in rats fed a high-fat diet. Sprague-Dawley rats were fed a high-fat diet containing 0 g (control), 1.0 g/100 kcal (X1) or 2.0 g/100 kcal (X2) of xylitol. After the 8-week feeding period, visceral fat mass and plasma insulin and lipid concentrations were significantly lower in xylitol-fed rats than those in high-fat diet rats. Gene expression levels of ChREBP and lipogenic enzymes were higher, whereas the expression of sterol regulatory-element binding protein 1c was lower and fatty acid oxidation-related genes were significantly higher in the liver of xylitol-fed rats as compared with high-fat diet rats. In conclusion, intake of xylitol may be beneficial in preventing the development of obesity and metabolic abnormalities in rats with diet-induced obesity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.