Abstract
We performed xylanase pretreatment prior to mechanical refining in the production of mulberry branch fibers, with the objective of saving energy and studying the effects of such pretreatment on the quality of the fibers. To determine the effects of the enzyme action, we analyzed the energy required for refining, related yield, and the dimension, deformation, and morphology of the fibers. We found that, with the xylanase pretreatment, the refining energy was reduced by 4%, with the yield of fibers being maintained at >85%. In addition, the fiber bundles were defibered further, resulting in reduced average length of the fiber. Furthermore, the fiber widths increased because of the improved swelling effect of the xylanase pretreatment. However, in some instances, the fine elements were reduced. With a low enzyme dosage, the fiber coarseness decreased remarkably and, because of the swelling and softening effects of the xylanase pretreatment on the mulberry branches, the fiber kink ratios and curl were reduced. Additionally, the mulberry branch tissue was loosened, facilitating fiber separation. In view of these findings, the biomechanical process could be a potentially green and efficient process for the manufacturing of mulberry branch fibers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.