Abstract

The aim of this study was to examine whether Xuesaitong, a multiherbal formulation for coronary heart disease, alters the pharmacokinetics of losartan. Adult male Sprague Dawley rats randomly received losartan (10 mg/kg) or losartan plus Xuesaitong (10 mg/kg) through an oral gavage (n = 6). Multiple blood samples were obtained for up to 36 h to determine the concentrations of losartan and its active metabolite, EXP3174, through ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Pharmacokinetics were estimated using a noncompartmental model. The half-life (t1/2) of losartan was decreased by Xuesaitong (4.26 ± 1.51 vs. 6.35 ± 2.10 h; P < 0.05). The apparent volume of distribution (Vd) of losartan was also decreased by the combination of losartan and Xuesaitong (4.41 ± 1.61 vs. 7.20 ± 2.41 mL; P < 0.05). The time to maximum concentration (Tmax) of losartan was increased by Xuesaitong (1.06 ± 1.04 vs. 0.13 ± 0.05 h; P < 0.05). Xuesaitong also decreased the t1/2 of EXP3174 (8.22 ± 1.41 vs. 6.29 ± 1.38 h; P < 0.05). These results suggest that there is a complex interaction between losartan and Xuesaitong. In addition to enhanced elimination of losartan and EXP3174, Xuesaitong may also decrease the absorption rate and Vd of losartan.

Highlights

  • Xuesaitong is a traditional Chinese medicine with multiple pharmacological activities

  • We examined the impact of Xuesaitong on the pharmacokinetic profile of losartan upon oral administration in rats

  • Calibration curves for losartan and EXP3174 comprised plots of the peak-area ratio of the analyte to internal standard (IS) against plasma concentration with a 1/x weighting

Read more

Summary

Introduction

Xuesaitong is a traditional Chinese medicine with multiple pharmacological activities. Major components of Xuesaitong are saponins from Panax notoginseng (PNS), including ginsenoside Rb1, ginsenoside Rg1, and notoginsenoside R1 [1]. Many patients receiving angiotensin-II-receptor antagonists for hypertension receive Xuesaitong [6,7,8]. As a nonpeptide angiotensin-II-receptor antagonist, losartan is the first of its kind in the market [9,10,11]. Losartan is metabolized into EXP3174—which is an active carboxylic-acid metabolite—by the cytochrome P450 subtypes, CYP3A4 and CYP2C9 [12, 13]. E elimination of EXP3174 requires cytochromes CYP3A4 and CYP2C9 [12]. EXP3174 has a much higher affinity for the angiotensin-II receptor and is mostly responsible for losartan’s pharmacodynamic properties [14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call