Abstract

Non-coding RNAs have been reported to participate in the pathophysiology of neuropathic pain. The objective of our study was to investigate the biological role of XIST in neuropathic pain development. In our study, we identify and validate that lncRNA XIST was markedly increased and miR-137 was significantly decreased in chronic constriction injury (CCI) rats. XIST silencing alleviated pain behaviors including both mechanical and thermal hyperalgesia in the CCI rats. XIST was predicted to interact with miR-137 by bioinformatics technology and dual-luciferase reporter assays confirmed the correlation between XIST and miR-137. miR-137 was negatively modulated by XIST and upregulation of miR-137 greatly reduced neuropathic pain development in CCI rats. Moreover, we observed that tumor necrosis factor alpha-induced protein 1 (TNFAIP1) was enhanced in CCI rats and 3'-untranslated region (UTR) of TNFAIP1 was exhibited to be a target of miR-137 by bioinformatics prediction. TNFAIP1 can act as a crucial inflammation regulator by activating NF-kB activity. Overexpression of miR-137 significantly suppressed TNFAIP1 both in vitro and in vivo. Furthermore, upregulation of XIST reversed the inhibitory role of miR-137 in neuropathic pain development by inhibiting TNFAIP1. In conclusion, our current study indicates that XIST can positively regulate neuropathic pain in rats through regulating the expression of miR-137 and TNFAIP1. Our results imply that XIST/miR-137/TNFAIP1 axis may serve as a novel therapeutic target in neuropathic pain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call