Abstract

The inhibitory effect of wortmannin (WO), a fungus-derived protein kinase inhibitor, was assessed on contractile responses elicited by phenylephrine-induced alpha 1-(alpha 1 R) and UK 14304-induced alpha 2-adrenergic receptor (alpha 2R) stimulation in the rabbit aorta and saphenous vein, respectively. In agonist dose-response studies, WO caused a noncompetitive inhibition of both alpha 1R and alpha 2R responses, but was more potent against alpha 2R. Maximally effective single-dose responses at both receptors were less sensitive to WO. The initial alpha 1R contractile response, associated with intracellular Ca2+ release and myosin light chain kinase activation, was relatively insensitive to WO, while the Ca2+ influx-dependent tonic contraction was more sensitive. Contractions induced by high K+ buffer were relatively insensitive to WO in both the aorta and saphenous vein. These results indicate that WO inhibits receptor-initiated Ca2+ influx-dependent contractile responses such as those caused by alpha 2R stimulation and the sustained phase of alpha 1R stimulation more readily than Ca2+ release-dependent responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.