Abstract

Monitoring is an executive function of working memory that serves to update novel information, focusing attention on task-relevant targets, and eliminating task-irrelevant noise. The present research used a verbal working memory task to examine how working memory capacity limits affect monitoring. Participants performed a Japanese listening span test that included maintenance of target words and listening comprehension. On each trial, participants responded to the target word and then immediately estimated confidence in recall performance for that word (metacognitive judgment). The results confirmed significant differences in monitoring accuracy between high and low capacity groups in a multi-task situation. That is, confidence judgments were superior in high vs. low capacity participants in terms of absolute accuracy and discrimination. The present research further investigated how memory load and interference affect underestimation of successful recall. The results indicated that the level of memory load that reduced word recall performance and led to an underconfidence bias varied according to participants' memory capacity. In addition, irrelevant information associated with incorrect true/ false decisions (secondary task) and word recall within the current trial impaired monitoring accuracy in both participant groups. These findings suggest that interference from unsuccessful decisions only influences low, but not high, capacity participants. Therefore, monitoring accuracy, which requires high working memory capacity, improves metacognitive abilities by inhibiting task-irrelevant noise and focusing attention on detecting task-relevant targets or useful retrieval cues, which could improve actual cognitive performance.

Highlights

  • Remarkable progress has been made using the concept of working memory (WM) by Baddeley and Hitch (1974) to explain how people differ in their cognitive abilities. Daneman and Carpenter (1980) created procedures for measuring working memory capacity (WMC), such as the reading span test (RST) and the listening span test (LST), and demonstrated a significant correlation between WMC and language comprehension

  • Before investigating effects of metacognitive level, effects on primary recall performance were examined using a mixed analyses of variances (ANOVA) with memory load condition and true/false decision accuracy as within-subjects factors, and WMC group as a between-subjects factor

  • Multiple comparisons (Bonferroni test, the corrected critical p-value 0.008) indicated that recall performance decreased as memory load increased in the low WMC group [two vs. three: t(24) = 5.99, p < 0.001; two vs. four: t(24) = 9.80, p < 0.001; two vs. five: t(24) = 8.46, p < 0.001; three vs. four: t(24) = 3.42, p < 0.001; three vs. five: t(24) = 4.89, p < 0.001; four vs. five: t(24) = 3.33, p < 0.005]

Read more

Summary

Introduction

Remarkable progress has been made using the concept of working memory (WM) by Baddeley and Hitch (1974) to explain how people differ in their cognitive abilities. Daneman and Carpenter (1980) created procedures for measuring working memory capacity (WMC), such as the reading span test (RST) and the listening span test (LST), and demonstrated a significant correlation between WMC and language comprehension. Conway and colleagues reviewed the methodological merits of WM span tests as Effects of WMC on Monitoring research tools, and noted that executive attentional processes are critical components of the WM span tests, including the RST (Conway et al, 2005). This may be why WMC predicts many cognitive abilities. Cowan’s (1999) model is structurally different from Baddeley’s (2000), which contains more specific storage properties, both agree that attentional focus plays a critical role in WMC (Baddeley, 2012; Cowan et al, 2014)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call