Abstract

The present work was conducted to study the effects of wood species, particle size and residue particle size obtained from trimming of wood–cement composites on physical and mechanical properties of cement-bonded particleboard (CBPB). Particleboard was manufactured with a wood/cement ratio of 1:3 and specific gravity 1200 kg m−3. After manufacturing, the boards were tested. The second order plan was used to test the significant difference between factors and levels. It was shown that slenderness and compaction ratio increased and bulk density and specific surface decreased with the increase of particle size. With the increase in slenderness ratio and compaction ratio and decrease in bulk density and specific surface, thickness swelling and mechanical properties improved, but water absorption by the board increased. The addition of 6% of 5/3 fraction size of particle obtained from trimming of boards improved significantly the properties of the boards. The optimized panel properties, obtained using poplar particles with a fraction size of 7pass/on5, exceeded the BISON type HZ and EN Standard for Wood Particleboard. CBPB made of alder or poplar particles with 5/3 fraction size of residue exceeded the BISON type HZ. All CBPB with 5/3 fraction size of residue showed lower mean values of thickness swelling, well below the maximum requirements of both standards. In addition, wood species, fraction size of particles and residue size are believed to have been the main cause of change in the properties of the boards.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.