Abstract

Forested headwater streams play an important role in watershed nutrient dynamics, and wood is thought to be a key factor influencing habitat structure and nitrate-nitrogen dynamics in many forested streams. Because wood in streams can promote nitrogen uptake through denitrification, we hypothesized that nitrate uptake velocities would decrease following wood removal. We measured stream characteristics and nitrate uptake velocities before and after wood manipulation experiments conducted at Hubbard Brook Experimental Forest, NH, and the Sleepers River watershed, VT. The mean size of stream substrates and the amount of riffle habitat increased following wood removal. In contrast to our expectations, summer nitrate uptake velocities increased in the wood removal treatments relative to the reference treatments, possibly because wood removal increased the availability of stable substrates for periphyton growth, therefore increasing nitrate demand in these streams. Our results highlight that effects of wood on stream ecosystems occur through multiple pathways and suggest that the relative importance of these pathways may vary seasonally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.