Abstract
The seismic isolation devices reduce the seismic vulnerability of the electrical equipment. Accurately assessing the seismic life-cycle cost (SLCC) of the electrical equipment is beneficial in guiding the design and enhancing the seismic resilience of electrical substations and converter stations. To evaluate the effects of the isolator devices on the seismic life-cycle cost of electrical equipment, a SLCC evaluation model was proposed in this study, and the evaluation was conducted on an ultra-high voltage (UHV) bypass switch (BPS) with wire rope isolators (WRI). The model takes into account equipment purchase, maintenance, transportation and installation costs and indirect losses caused by power outages. Afterward, the SLCC and break-even time of the UHV BPS with and without WRIs in different regions were analyzed. The results indicate that beyond the break-even time, the BPS with WRIs becomes more economically viable. Moreover, its economic viability increases as the service life extends. Therefore, in high seismic cost risk areas, it is recommended to adopt seismic isolation devices to ensure the secure and economically efficient operation of electrical equipment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.