Abstract
Phytoplankton seasonal succession has been linked to a variety of serial environmental changes, especially weather- and climate-induced physical forcing. This study compared spring phytoplankton dynamics after winters of different severity (cold, normal, and warm) in Lake Erken, Sweden. The spring diatom bloom was dominated by different functional groups: group A (centric diatoms 5–10 μm) after cold winters, B (centric diatoms >15 μm) after normal winters, and P (Aulacoseira granulata, Fragilaria crotonensis) after warm winters. Our results suggest that weather-related processes were the primary external drivers accounting for differences in spring phytoplankton dynamics in Lake Erken. Spring phytoplankton are influenced by overwintering species from the last autumn that can initiate the following spring bloom. Average taxonomic distinctness of the spring community was assessed using a new biodiversity measurement that incorporates taxonomic relatedness information. This value was lower than expected after warm and cold winters, which had winter air temperature 1°C deviation from an average value calculated over 21 years. Such winters increased the level of disturbance or stress to the lake, resulting in a spring with less diverse phytoplankton by narrowing the niche for species with various ecological requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.