Abstract
As photovoltaic (PV) power plants become more popular, it is important to understand how wind affects the temperature distribution and consequently performance of modules placed in different rows of a PV array. This study conducts a comprehensive three dimensional CFD simulation for two 5 by 10 PV arrays (with and without inter-row module spacing) to assess the effects of wind on PV array power output. By solving the continuity, momentum, and energy equations simultaneously, the temperature distribution in the PV modules and the surrounding air along with the resulting velocity profiles are obtained and investigated for two wind directions (northerly and southerly) and two wind speeds of 2 and 5 m/s. The electrical output of PV modules for the respective cases are then compared. The results show that the PV array with zero inter-row module spacing performs better under northerly wind and experiences a 5.3% increase in power output with increasing wind speed. However, the PV array with 3 cm spacing performs better under southerly wind and experiences a 4.6% increase in power output with increasing wind speed. It is found that the PV array with inter-row spacing generally performs better than the one with zero inter-row module spacing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.