Abstract

Alpha (α)-tocopherol is the most biologically active and preferentially retained form of vitamin E in the human body and is known for its antioxidant and gene regulatory functions. Its increased intake is implicated in protection against diseases that involve an oxidative stress component. We have evaluated the chemopreventive potential of a diet supplemented with natural α-tocopherol-enriched transgenic (TR) Brassica juncea seeds. The modulation of phase I and phase II xenobiotic metabolism and of antioxidative enzymes was compared in the livers of mice fed on a control diet or on a diet supplemented with 2, 4, and 6% (w/w) of wild-type (WT) or TR seeds. A dose-dependent increase in the specific activities of these enzymes was observed in those animals fed on diet supplemented with TR seeds. In comparison, an increase in the specific activities of antioxidative enzymes was substantial only at higher doses of WT seeds. Consequently, oxidative stress measured in terms of lipid peroxidation and lactate dehydrogenase activity was found to be lower in the case of mice fed with the supplemented diet. However, the chemopreventive potential of TR seeds was more pronounced than that of WT seeds. This study demonstrates the feasibility of fortifying diets with natural α-tocopherol for chemopreventive benefits by means of transgenic manipulation of a commonly used oilseed crop.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call