Abstract

<p id="C3">It is well known that wide range sowing can simultaneously improve grain yield (GY) and nitrogen use efficiency (NUE). However, the effects of wide range sowing on grain quality have not been investigated while GY and NUE increased. In the present study, four winter wheat cultivars (Gaoyou 5766, Jimai 44, Taishan 27, and Zhouyuan 9369) were used as experimental materials and two sowing patterns (the wide range sowing and conventional drilling sowing) were designed during 2018-2019 and 2019-2020 growing seasons. Also, we investigated the effects of wide range sowing on GY, NUE, and grain quality. Under wide range sowing, grain number on unit land area were increased by an average of 13.16% across cultivars and growth seasons mainly due to the increase of spike number on unit land area, and in turn GY increased by an average of 13.39%. Meanwhile, nitrogen (N) uptake during whole growth season especially at post-anthesis stage were enhanced. The N accumulation during whole growth season increased by an average of 10.29% while that increased by an average of 36.83% at post-anthesis stage. Consequently, N uptake efficiency and NUE increased by 12.73% and 13.39%, respectively. Enhanced N uptake resulted in a sufficient N supply for grain and a significant increase in grain N accumulation on unit land area. A similar increase magnitude was observed between grain N accumulation (on average 13.38%), grain number (13.16%), and GY (13.39%). As a result, total quantity of N per grain and grain protein concentration remained unchanged, which led to a stable grain protein composition and grain quality. Conclusively, wide range sowing can maintain good grain quality with increased GY and NUE by optimizing coupling of GY formation process with the process of N uptake and translocation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call