Abstract

Enhanced recovery following physical activity and exercise-induced muscle damage (EIMD) has become a priority for athletes. Consequently, a number of post-exercise recovery strategies are used, often without scientific evidence of their benefits. Within this framework, the purpose of this study was to test the efficacy of whole body cryotherapy (WBC), far infrared (FIR) or passive (PAS) modalities in hastening muscular recovery within the 48 hours after a simulated trail running race. In 3 non-adjoining weeks, 9 well-trained runners performed 3 repetitions of a simulated trail run on a motorized treadmill, designed to induce muscle damage. Immediately (post), post 24 h, and post 48 h after exercise, all participants tested three different recovery modalities (WBC, FIR, PAS) in a random order over the three separate weeks. Markers of muscle damage (maximal isometric muscle strength, plasma creatine kinase [CK] activity and perceived sensations [i.e. pain, tiredness, well-being]) were recorded before, immediately after (post), post 1 h, post 24 h, and post 48 h after exercise. In all testing sessions, the simulated 48 min trail run induced a similar, significant amount of muscle damage. Maximal muscle strength and perceived sensations were recovered after the first WBC session (post 1 h), while recovery took 24 h with FIR, and was not attained through the PAS recovery modality. No differences in plasma CK activity were recorded between conditions. Three WBC sessions performed within the 48 hours after a damaging running exercise accelerate recovery from EIMD to a greater extent than FIR or PAS modalities.

Highlights

  • Endurance events such as long distance running, cycling or triathlon competitions require extensive physical and psychological involvement of the athlete during both the training and the competition in order to achieve success

  • No significant differences between running sessions were observed in absolute terms at baseline for maximal voluntary torque, plasma creatine kinase (CK) activity, and perceived sensations

  • Plasma creatine kinase activity In all subjects, CK activity significantly increased after the simulated trail running race

Read more

Summary

Introduction

Endurance events such as long distance running, cycling or triathlon competitions require extensive physical and psychological involvement of the athlete during both the training and the competition in order to achieve success. After a running session, where a large proportion of eccentric work is performed, muscular recovery becomes pertinent. It is well documented that eccentric contractions, which involve force generation in a lengthening muscle, procure severe structural damage in muscles, affecting their contractile properties [3].Within days after exercise, these structural alterations are classically accompanied by physiological and subjective perceptions of muscle damage that delay recovery. The release of muscular enzymes (e.g. creatine kinase, CK) into the plasma and sensations of pain or discomfort (i.e. delayed-onset-muscle-soreness, DOMS) typically occur after eccentric loading of the skeletal muscle and are classically used to study the extent of muscle damage [4,5,6]. The ensuing decline in maximal force generating capacity constitutes a relevant indicator of exercise-induced muscle damage (EIMD) [7]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call