Abstract

Inefficient nitrogen (N) fertilization and irrigation have led to unhealthy nitrate levels in groundwater bodies of agricultural areas in California. Simultaneously, high commodity prices and drought have encouraged perennial crop growers to turnover less-productive orchards, providing opportunities to recycle tree biomass in situ and to use high-carbon (C) residues to conserve soil and water resources. Although climate change adaptation and mitigation benefits of high-C soil amendments have been shown, uncertainties remain regarding the benefits and trade-offs of this practice for N cycling and retention. We used established almond [Prunus dulcis (Mill.) D. A. Webb] orchard trials on Hanford fine sandy loam with short-term and long-term biomass recycling legacies to better understand the changes in N dynamics and retention capacity associated with this practice. In a soil column experiment, labeled N fertilizer was added and traced into various N pools, including microbial biomass and inorganic fractions in soil and leachate. Shifts in microbial communities were characterized using the abundance of key N cycling functional genes regulating nitrification and denitrification processes. Our findings showed that, in the short term, biomass recycling led to N immobilization within the orchard biomass incorporation depth zone (0-15cm) without impacts on N leaching potential. However, this practice drastically reduced nitrate leaching potential by 52%, 10 yr after biomass incorporation without an increase in N immobilization. Although the timing of these potential benefits as a function of microbial population and C and N biogeochemical cycles still needs to be clarified, our results highlight the potential of this practice to meaningfully mitigate nitrate discharges into groundwater while conserving soil resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call