Abstract

Abstract Research on earthworms in North America has focused on the effects of invasive earthworms, with few studies examining the ecology of native earthworm species. Deer have been shown to influence belowground processes through grazing, trampling, and fecal pellet deposition. We proposed that native earthworms in an oak-dominated forest in Virginia might benefit from increased organic matter provided by deer fecal material. We examined potential interactions between a common aboveground herbivore, the white-tailed deer (Odocoileus virginianus), and earthworms using laboratory and field experiments. In our laboratory experiment, we found that a native earthworm, Eisenoides carolinensis, and an invasive earthworm, Lumbricus terrestris both fared better in treatments with deer pellets compared with the treatment with leaf litter alone. In our field experiment, we used fences to exclude deer from six plots and left twelve plots unfenced to explore the effects of deer activity on earthworm biomass and density. We also examined the effects of deer on soil and vegetation characteristics. After three years, the amount of herbaceous cover was higher on fenced plots compared with unfenced plots. Although we found no other differences for vegetation and soil characteristics between fenced and unfenced plots, many of these variables were important as covariates in our models examining the effect of deer exclusion on earthworms, indicating plot-level (as opposed to treatment-level) variation in these variables. All identifiable earthworms were either E. carolinensis or Diplocardia spp. (both native species), with E. carolinensis making up 90% of the specimens. The total biomass of earthworms, as well as the biomass and density of adult and small juvenile earthworms, was greater on unfenced plots with deer activity compared with fenced plots. This study highlights the importance of above- and below-ground interactions in forest ecosystems by showing that E. carolinensis appears to benefit from the presence of deer and adds to our sparse knowledge of the ecology of this native earthworm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call