Abstract
BackgroundRhipicephalus (Boophilus) annulatus and Rhipicephalus (Boophilus) microplus (southern cattle fever tick; SCFT), collectively known as cattle-fever ticks (CFTs), are vectors of protozoal parasites (Babesia bigemina and Babesia bovis) that cause bovine babesiosis (also known as cattle fever). One traditional strategy for CFT eradication involves the implementation of a “pasture vacation,” which involves removing cattle (Bos taurus) from an infested pasture for an extended period of time. However, vacated pastures are often inhabited by wildlife hosts, such as white-tailed deer (WTD; Odocoileus virginianus), which can serve as alternate hosts for questing CFTs. We hypothesized that the distribution of host-seeking larvae among habitat types post-pasture vacation would reflect habitat use patterns of WTD, and in turn, affect the subsequent rate of pasture infestation by CFT.MethodsWe adapted a spatially explicit, individual-based model to simulate interactions among SCFT, cattle, and WTD as a tool to investigate the potential effects of WTD habitat use preferences on the efficacy of a pasture vacation. We parameterized the model to represent conditions typical of rangelands in south Texas, USA, simulated a 1-year pasture vacation under different assumptions regarding WTD habitat use preferences, and summarized effects on efficacy through (1) time post-vacation to reach 100% of pre-vacation densities of host-seeking larvae, and (2) the ecological conditions that resulted in the lowest host-seeking larval densities following pasture vacation.ResultsLarval densities at the landscape scale varied seasonally in a similar manner over the entire simulation period, regardless of WTD habitat use preferences. Following the removal of cattle, larval densities declined sharply to < 100 larvae/ha. Following the return of cattle, larval densities increased to > 60% of pre-vacation densities ≈ 21 weeks post-vacation, and reached pre-vacation levels in less than a year. Trends in larval densities in different habitat types paralleled those at the landscape scale over the entire simulation period, but differed quantitatively from one another during the pasture vacation. Relative larval densities (highest to lowest) shifted from (1) wood/shrub, (2) grass, (3) mixed-brush during the pre-vacation period to (1) mixed-brush, (2) wood/shrub, (3) grass or (1) wood/shrub, (2) mixed-brush, (3) grass during the post-vacation period, depending on WTD habitat use preferences.ConclusionsBy monitoring WTD-driven shifts in distributions of SCFT host-seeking larvae among habitat types during simulated pasture vacation experiments, we were able to identify potential SCFT refugia from which recrudescence of infestations could originate. Such information could inform timely applications of acaricides to specific refugia habitats immediately prior to the termination of pasture vacations.Graphical
Highlights
Rhipicephalus (Boophilus) annulatus and Rhipicephalus (Boophilus) microplus, collectively known as cattle-fever ticks (CFTs), are vectors of protozoal parasites (Babesia bigemina and Babesia bovis) that cause bovine babesiosis
CFT and Babesia sp. are prevalent in Mexico, but since the 1940s have been confined in the USA primarily within the permanent CFT quarantine zone, which is along the border with Mexico and is maintained by the Cattle Fever Tick Eradication Program (CFTEP) [4]
Conclusions cattle are the main hosts of CFT, white-tailed deer (WTD) are confirmed hosts in and around the permanent CFT quarantine zone along the US-Mexico border
Summary
Rhipicephalus (Boophilus) annulatus and Rhipicephalus (Boophilus) microplus (southern cattle fever tick; SCFT), collectively known as cattle-fever ticks (CFTs), are vectors of protozoal parasites (Babesia bigemina and Babesia bovis) that cause bovine babesiosis ( known as cattle fever). Rhipicephalus (Boophilus) annulatus and Rhipicephalus (Boophilus) microplus (southern cattle fever tick; SCFT), collectively known as cattle-fever ticks (CFTs), are vectors of protozoal parasites (Babesia bigemina and Babesia bovis) that cause bovine babesiosis (cattle fever), which is considered the most economically important livestock disease worldwide [1]. The location of egg masses reflects the habitat use of hosts, and the likelihood of CFTs encountering host species depends on host community composition and density [9, 10]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.