Abstract

Rotating parts of turbomachines are generally studied using different uncoupled approaches. For example, the dynamic behavior of shafts and wheels are considered independently and the influence of the surrounding fluid is often taken into account in an approximate way. These approaches, while often sufficiently accurate, are questionable when wheel-shaft coupling is observed or when fluid elements are strongly coupled with local structural deformations (leakage flow between wheel and casing, fluid bearings mounted on a thin-walled shaft, etc.). The approach proposed is a step toward a global model of shaft lines. The whole flexible wheel-shaft assembly and the influence of specific fluid film elements are considered in a fully three-dimensional model. In this paper, the proposed model is first presented and then applied to a simple disk-shaft assembly coupled with a fluid film clustered between the disk and a rigid casing. The finite element method is used together with a modal reduction for the structural analysis. As thin fluid films are considered, the Reynolds equation is solved using finite differences in order to obtain the pressure field. Data are transferred between structural and fluid meshes using a general method based on an interfacing grid concept. The equations governing the whole system are solved within a time-marching procedure. The results obtained show significant influence of specific three-dimensional features such as disk-shaft coupling and local disk deformations on global behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.