Abstract
In this study, the effects of wheat protein (WP) on the hot-extrusion 3D-printing (HE-3DP) performance of wheat starch (WS) gels, as well as effects of such gels on the encapsulation of caffeic acid, were investigated for the first time. The HE-3DP results show that the addition of WP can reduce print-line width and improve printing accuracy and fidelity, and the best printing results were achieved when using gels with 10 % WP. The rheological results show that WP reduced the gels' linear viscoelastic region (LVR), yield stress (τy), flow stress (τf) and consistency factor (K) but increased their structural recovery rate, which facilitated smooth extrusion during 3D printing and, thus, improved printing accuracy. The analysis of X-ray diffraction and small-angle X-ray scattering indicates that adding WP to WS could increase the mass fractal dimension and lead to denser gel network structures. The results regarding release kinetics demonstrate that the maximum release of caffeic acid from gels decreased by 28 % with the addition of WP, indicating slow-release behaviour. This study provided valuable information about processing wheat products via 3D printing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.