Abstract

The very small strain shear modulus of soil, G0, is affected by many factors including soil properties, current stress state, stress history, and matric suction. Very little research has been conducted on anisotropic shear moduli of unsaturated soils. In this study, the effects of wetting–drying and stress ratio on anisotropic shear stiffness of an unsaturated completely decomposed tuff (CDT) at very small strains have been investigated using a modified triaxial testing system equipped with three pairs of bender elements. During drying and wetting tests, the measured very small strain shear moduli increased in a nonlinear fashion, but at a reduced rate as the matric suction increased. Similar to the stress-dependent soil-water characteristic curves (SDSWCCs), there was hysteresis between the drying and wetting curves showing the variations in shear moduli with matric suction. Variation in suction on the specimens under isotropic conditions produced changes in stiffness anisotropy (expressed as G0(hh)/G0(hv)) together with anisotropic strains. In shearing tests at constant suctions, significant stress-induced stiffness anisotropy was observed due to a change in the stress ratio. While shearing at a constant stress ratio, G0(hh)/G0(hv) appeared to be constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.