Abstract

Adipose tissue influences steroid conversion by paracrine and autocrine mechanisms. Leptin is secreted by adipocytes and influenced by sex hormones and adiposity. Short-term weight loss in the treatment of childhood obesity reduces leptin and adipose tissue. We therefore asked, Do alterations in sex hormones occur owing to weight loss? and can these alterations be explained by changes in fat mass or sc fat and are alterations in sex hormones directly related to the fall in leptin? Twenty obese boys and 40 obese girls were studied before and after 3 wk of low-calorie diet and physical activity. The weight loss program significantly lowered fat mass, abdominal fat distribution, sc fat (all p < 0.0001), leptin, insulin, and estradiol (all p < 0.0001) but not testosterone. Changes in leptin were related to changes in body mass and to changes in fat mass in boys. In girls, changes in leptin were related to changes in sc fatness and also to changes in insulin. In boys, the reduction in sc fat was positively correlated to changes in testosterone (r = 0.54; p < 0.01) and inversely related to the fall in estradiol (r = -0.41; p < 0.05). In girls, changes in testosterone (r = 0.33; p < 0.05) and in estradiol (r = 0.40; p < 0.01) were related to changes in insulin. Stepwise regression showed that initial leptin was the best determinant for the fall in leptin (adjusted R2 = 0.87; p < 0.0001). The results show that alterations in sex hormones are related to changes in certain fat depots in boys whereas in girls changes in insulin might participate in changes in sex hormones. A greater fall in leptin owing to short-term weight loss is not associated with greater alterations in sex hormones and initial leptin is the best determinant to explain the variability in changes in leptin. The possibility of sex differences in changes in sex hormones secondary to the reduction in fatness warrants further study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.