Abstract

BackgroundWearable ankle robotics could potentially facilitate intensive repetitive task-specific gait training on stair environment for stroke rehabilitation. A lightweight (0.5 kg) and portable exoskeleton ankle robot was designed to facilitate over-ground and stair training either providing active assistance to move paretic ankle augmenting residual motor function (power-assisted ankle robot, PAAR), or passively support dropped foot by lock/release ankle joint for foot clearance in swing phase (swing-controlled ankle robot, SCAR). In this two-center randomized controlled trial, we hypothesized that conventional training integrated with robot-assisted gait training using either PAAR or SCAR in stair environment are more effective to enhance gait recovery and promote independency in early stroke, than conventional training alone.MethodsSub-acute stroke survivors (within 2 months after stroke onset) received conventional training integrated with 20-session robot-assisted training (at least twice weekly, 30-min per session) on over-ground and stair environments, wearing PAAR (n = 14) or SCAR (n = 16), as compared to control group receiving conventional training only (CT, n = 17). Clinical assessments were performed before and after the 20-session intervention, including functional ambulatory category as primary outcome measure, along with Berg balance scale and timed 10-m walk test.ResultsAfter the 20-session interventions, all three groups showed statistically significant and clinically meaningful within-group functional improvement in all outcome measures (p < 0.005). Between-group comparison showed SCAR had greater improvement in functional ambulatory category (mean difference + 0.6, medium effect size 0.610) with more than 56% independent walkers after training, as compared to only 29% for CT. Analysis of covariance results showed PAAR had greater improvement in walking speed than SCAR (mean difference + 0.15 m/s, large effect size 0.752), which was in line with the higher cadence and speed when wearing the robot during the 20-session robot-assisted training over-ground and on stairs.ConclusionsRobot-assisted stair training would lead to greater functional improvement in gait independency and walking speed than conventional training in usual care. The active powered ankle assistance might facilitate users to walk more and faster with their paretic leg during stair and over-ground walking.Trial registration: ClinicalTrials.gov NCT03184259. Registered on 12 June 2017.

Highlights

  • Stroke is a leading cause of long-term disability [1]

  • If subjects in power-assisted ankle robot (PAAR) and swing-controlled ankle robot (SCAR) were discharged from the hospital before completing the 20-session robot-assisted training, they were invited to continue the remaining sessions in out-patient day-care rehabilitation center of the same hospital facility

  • Powered assistance in PAAR that actively moved the paretic ankle to facilitate subjects were able to walk faster with higher cadence in the 20-session robot-assisted training when compared with the ankle-locking swing-controlled robot in SCAR

Read more

Summary

Introduction

Stroke is a leading cause of long-term disability [1]. Person with stroke commonly suffer from foot drop problem, with high falling risk because the affected foot would drag on the ground and stumble on obstacles [2]. Previous researches showed sub-acute stroke survivors participating in early gait training together with electromechanical-assisted robotics, such as Lokomat, Gait Trainer, and G-EO system, could improve recovery of gait independency to a certain extent [4, 9]. A lightweight (0.5 kg) and portable exoskeleton ankle robot was designed to facilitate over-ground and stair training either providing active assistance to move paretic ankle augmenting residual motor function (power-assisted ankle robot, PAAR), or passively support dropped foot by lock/release ankle joint for foot clearance in swing phase (swing-controlled ankle robot, SCAR) In this two-center randomized controlled trial, we hypothesized that conventional training integrated with robot-assisted gait training using either PAAR or SCAR in stair environment are more effective to enhance gait recovery and promote independency in early stroke, than conventional training alone

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call