Abstract

Abstract As a conveyor belt transferring inland ice to ocean, ice shelves shed mass through large, systematic tabular calving, which also plays a major role in the fluctuation of the buttressing forces. Tabular iceberg calving involves two stages: first is systematic cracking, which develops after the forward-slanting front reaches a limiting extension length determined by gravity–buoyancy imbalance; second is fatigue separation. The latter has greater variability, producing calving irregularity. Whereas ice flow vertical shear determines the timing of the systematic cracking, wave actions are decisive for ensuing viscoplastic fatigue. Because the frontal section has its own resonance frequency, it reverberates only to waves of similar frequency. With a flow-dependent, nonlocal attrition scheme, the present ice model [Scalable Extensible Geoflow Model for Environmental Research-Ice flow submodel (SEGMENT-Ice)] describes an entire ice-shelf life cycle. It is found that most East Antarctic ice shelves have higher resonance frequencies, and the fatigue of viscoplastic ice is significantly enhanced by shoaling waves from both storm surges and infragravity waves (~5 × 10−3 Hz). The two largest embayed ice shelves have resonance frequencies within the range of tsunami waves. When approaching critical extension lengths, perturbations from about four consecutive tsunami events can cause complete separation of tabular icebergs from shelves. For shelves with resonance frequencies matching storm surge waves, future reduction of sea ice may impose much larger deflections from shoaling, storm-generated ocean waves. Although the Ross Ice Shelf (RIS) total mass varies little in the twenty-first century, the mass turnover quickens and the ice conveyor belt is ~40% more efficient by the late twenty-first century, reaching 70 km3 yr−1. The mass distribution shifts oceanward, favoring future tabular calving.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.