Abstract

N-Nitrosodimethylamine (NDMA) is a potent carcinogen that yields a cancer risk of 10−6 at concentrations as low as 0.7ngL−1. Tentative guideline values are set at 3ngL−1 in California, USA; 9ngL−1 in Ontario, Canada; 40ngL−1 nationwide in Canada; and 100ngL−1 by the World Health Organization. NDMA is a great concern in treating reclaimed water as well as drinking water. UV degradation can be considered effective degradation method. A 1-log reduction of NDMA is achieved by 1000mJcm−2 of a 254-nm low pressure (LP) mercury UV lamp. However, a higher degradation efficiency than that provided by LP lamps is desired in practical treatment. In this study, the effects of wavelength and water quality were investigated to achieve higher degradation efficiency. The effects of wavelength were examined by comparing three UV lamps: a 222-nm Kr Cl Excimer UV lamp, a 254-nm LP mercury UV lamp, and a 230- to 270-nm filtered medium pressure (FMP) mercury UV lamp. The 222-nm lamp and FMP lamp achieved 4 times and 2.8 times higher degradation efficiency, respectively, than the conventional 254-nm LP lamp. Effects on water quality were also simulated by using absorption spectrum data of nitrate solutions and process water from a drinking-water treatment plant. In the simulation, the 222-nm lamp was affected by UV-absorbing compounds in the water, whereas the FMP lamp showed more stable degradation efficiency. Appropriate use of these three types of lamps could enhance the efficiency of degradation of NDMA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.