Abstract

We present a matter wave gyroscope with a Sagnac area of 5.92 cm2, achieving a short-term sensitivity of 167 nrad/s/Hz1/2. The atom interferometry gyroscope is driven by a π/2 - π - π - π/2 Raman pulse sequence based on an atom fountain with a parabolic trajectory. The phase-locked laser beams for Raman transitions partly propagate outside of the vacuum chamber and expose to the air when passing through the two arms of the vacuum chamber. This configuration leads to the tilt of the laser's wave-front and suffers the fluctuation of air density. The impacts on both the fringe contrast and long-term stability are experimentally investigated in detail, and effective schemes are developed to improve the performance of our atom gyroscope. The method presented here could be useful for developing large atom interferometry facilities with separated vacuum chambers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.