Abstract
Wave–current interaction (WCI) is important in modulating hydrodynamics and water mixing in estuaries, and thereby the transport of water-borne materials. However, the effects of WCI on salt transport and salt intrusion in estuaries during storm events have been rarely examined. In the present study, we use a coupled atmosphere–ocean–wave–sediment transport (COAWST) modeling system to investigate the effects of WCI on salt intrusion in the highly stratified Modaomen Estuary during Typhoon Hagupit (2008). The model is validated by the measured wave, water elevation, and surface salinity data, and several diagnostic model experiments are conducted. WCI increases the storm surge by 0.8 m at the peak surge (25% of the total surge height). The wave-breaking-induced momentum flux and the Stokes drift increase the magnitude of the landward flow by 0.3 m s−1 (30% of the total landward flow). In addition, the waves increase water mixing by 2–4 times compared with that without waves. Hence, WCI significantly increases the landward advective salt transport and decreases the steady shear transport. The net effect of the WCI is a significant increase of salt import and salt intrusion during the typhoon event. However, in the aftermath of the storm, the imported salt water is rapidly flushed out by the increased river discharge, and the estuary regains its stratification within one day.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.