Abstract

A Monte Carlo simulation is used in order to study the effects of wave-particle interactions (WPI) on H+ distributions in the polar wind outflow. The simulation also considers effects of the gravity, the polarization electric field, the divergence of geomagnetic field lines and H+−O+ Coulomb collisions. The proton velocity distribution function (VDF) and the profiles of its moments (density, bulk velocity, parallel and perpendicular temperatures, heat flux…) are found for different levels of WPI, i.e., for different values of the normalized diffusion rate in the velocity space (D⊥). We find that the wave-particle interactions accelerate the polar wind and can have important effects on the double-hump H+ distribution obtained in the transition region between the collision-dominated low altitudes and the collisionless high altitude regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.