Abstract

To evaluate the effects of water velocity and artificial substratum characteristics on the growth rate and biomass accumulation of periphyton, an artificial stream mesocosm experiment was conducted using alternative water sources collected from the Mangwall Stream (MW), the Han River (HR), and bank filtration water (BFW) from the Han River in the Republic of Korea. The measured concentrations of organic matter and inorganic nutrients in the MW were higher than in the HR and BFW. The surface of tile is relatively smooth and nonporous, whereas the surfaces of concrete and pebble are rough with numerous isolated pores in which filamentous periphyton become immobilized against hydrodynamic shear stress and mat tensile strength. Compared with the periphyton biomass of the HR and BFW, the peak biomass in the MW was significantly higher due to higher nutrient concentrations in the MW. Reasonable linear relationships (R2 ≥ 0.69) between water velocity and total periphyton biomass/growth rate were obtained, indicating that water velocities above critical values can cause a reduction in biomass accrual. In addition, reasonable relationships (R2 ≥ 0.58) between specific surface area and total periphyton biomass were obtained for the HR and BFW, indicating that an increase in the specific surface area of the substratum can lead to an increase in periphyton biomass in a nutrient-poor water body. Principal components analysis (PCA) results indicate that nutrient concentrations were the first dominant limiting factor for the growth and accumulation of periphyton, and water velocity and the specific surface area of the substratum were determined to be potential limiting factors. Consequently, the growth rate and biomass accumulation of periphyton were considered to be a complex function of nutrient concentrations, water velocities, and substratum characteristics.

Highlights

  • Periphyton and phytoplankton are dominant producers of organic matter and are responsible for carbon fixation and the sequestration of essential nutrients, such as nitrogen and phosphorus, in the aquatic ecosystem [1,2,3]

  • The measured concentrations of organic matter and inorganic nutrients for the Mangwall Stream (MW) were greater than the measured concentrations of organic matter and inorganic nutrients for the Han River (HR) and bank filtration water (BFW)

  • Between specific surface area and total periphyton biomass were obtained for MW1, whereas stronger relationships (R2 ≥ 0.58) between specific surface area and total periphyton biomass were obtained for the HR and BFW

Read more

Summary

Introduction

Periphyton and phytoplankton are dominant producers of organic matter and are responsible for carbon fixation and the sequestration of essential nutrients, such as nitrogen and phosphorus, in the aquatic ecosystem [1,2,3]. Periphyton have been reported to attach to various substrata and to form various types of biofilm [4,5]. Because periphyton can remain attached to various substrata for an extensive period, they can be used as a biological indicator to evaluate water quality by monitoring changes in biomass or species composition [6,7]. High levels of periphyton growth and accumulation have impaired the use of rivers and streams for drinking water [9], damaged aquatic habitat [10], and degraded the aesthetic and recreational uses of rivers and streams [11]. Because many factors (i.e., water velocity, nutrient concentration, light intensity, substratum availability, and water temperature) have been reported to affect the growth and accumulation of periphyton, numerous established criteria and thresholds have been suggested to prevent the excessive growth and accumulation of periphyton in various environments [12,13]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.