Abstract

A field control experiment was carried out to determine the influence of water table changes on soil CO2, CH4, and N2O emissions in Calamagrostis angustifolia freshwater marsh in Northeast of China. The results showed that the water depth of 5 cm below the ground surface increased soil CO2 emission, but there was no significant influence of deeper water table on gas emission. CH4 emission was accelerated by deep standing water and approached the peak in the plant booming time. This suggests that root activity has influence on CH4 production. The result also demonstrated that both low water table level and inundated environment would inhibit N2O emission. Comparing the total global warming potential of three gases under different conditions, it can be concluded that maintaining a comparatively steady water table near the soil surface can benefit soil carbon sequestration in the C. angustifolia marsh, and decrease of the greenhouse gases emissions to the atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.