Abstract

AbstractEggs of silver carp Hypophthalmichthys molitrix absorb water after release from the female, causing them to become turgid and to increase substantially in size. The volume of water that diffuses within an egg is most likely determined by (1) the difference in ionic concentration between the egg and the water that surrounds it and (2) the elasticity of the egg membrane. Prior observations suggest that silver carp eggs may swell and burst in soft waters. If water hardness affects silver carp reproductive success in nonnative ecosystems, this abiotic factor could limit silver carp distribution or abundance. In this study, we tested the effect of water hardness on silver carp egg enlargement and hatching success. Groups of newly fertilized silver carp eggs were placed in water at one of five nominal water hardness levels (50, 100, 150, 200, or 250 mg/L as CaCO3) for 1 h to harden (absorb water after fertilization). Egg groups were then placed in separate incubation vessels housed in two recirculation systems that were supplied with either soft (50 mg/L as CaCO3) or hard (250 mg/L as CaCO3) water to evaluate hatching success. Tests were terminated within 24 h after viable eggs had hatched. Eggs that were initially placed in 50‐mg/L water to harden were larger (i.e., swelled more) and had a greater probability of hatch than eggs hardened in other water hardness levels. Unlike the effect of water hardness during egg hardening, the water hardness during incubation appeared to have no effect on egg hatching success. Our research suggests that water hardness may not be a limiting factor in the reproduction, recruitment, and range expansion of silver carp in North America.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.