Abstract

Fatigue tests in simulated LWR environment of carbon and stainless steels were performed under high water flow rates between 7 to 10 m/s. For carbon steel, high flow rate of water clearly mitigated the environmental effect on the fatigue life at the high sulfur concentration of 0.016% which caused high environmental effect on a fatigue life. On the contrary, high flow rate of water slightly enhanced the environmental effect at the low sulfur concentration at or less than 0.008% which caused very low environmental effect. These results suggested that the environmental fatigue life under various flow rate conditions should be determined by the combination between the mitigating effect caused by flushing of the severe local environment and the enhancing effect caused by increase in corrosion potential. Low alloy steel showed the similar behavior as carbon steel. For stainless steel, flow rate had little effect on the fatigue life of type 316NG stainless steel. It suggested that there was no role of water flushing. For type 304 and 304L stainless steel, fatigue life has a tendency to decrease with increase in water flow rate. Fatigue lives of type 304 stainless steel under high flow rate of 7 to 10 m/s were shorter than those predicted by proposed fatigue life prediction equation by the Japanese EFT committee. This effect should be considered in an evaluation of environmental fatigue. No water flow effect was found in cast stainless steel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call