Abstract

ABSTRACTThe mechanical properties of early artist's acrylic paints were investigated under controlled aqueous additive leaching for the purpose of identifying changes caused by cleaning paintings with water. Strength and stiffness values were obtained using a tensiometer to collect stress-strain curves of paint films. The results were compared to those from similar experiments in which paint films were tested under various age, temperature, and relative humidity (RH) values. Strength and stiffness both increased with decreased temperature, decreased RH, increased age, and increased additive removal. The most significant impact on mechanical properties was caused by lowering temperature to the Tg region around 5°C. Dramatic changes in properties were caused by RH fluctuations; however, the magnitudes were negligible in comparison to those induced by low temperature. Removal of water-soluble additives produced a uniform increase in tensile strength and secant modulus at all RH values. The films were equally responsive to fluctuations in RH before and after additive leaching. In comparing the material properties across a wide range of conditions it is evident that the acrylic paints in this study were not significantly altered by the amount of water exposure involved in cleaning paintings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call