Abstract

Abstract In this paper, pulsed laser ablation method was used for synthesis of colloidal nanoparticles of aluminum and titanium in a distilled water medium. The interaction was performed in a water cell in which the target was placed at different depths of water. The effects of the number of laser pulses and the water depth in which the interaction occurred on average size and size distribution of prepared colloidal nanoparticles were investigated. A UV–vis absorption spectrophotometer and a scanning electron microscope were used for the characterization of the produced nanoparticles. Using image processing techniques and analyzing the SEM images, nanoparticles size properties were achieved. According to the results, position of the target in different water depths has strong effect on size properties of the synthesized nanoparticles. Our results also showed that higher number of laser pulses produces smaller mean size nanoparticles with narrower size distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.