Abstract

Leaves of cotton plants, Gossypium hirsutum L., stressed by water deficit, reduced daylight, and weed competition, or treated with a kaolin wettable powder formulation were analyzed for levels of 17 free amino acids (FAAs) using reversed-phase high-performance liquid chromatography. Water deficit stress resulted in heightened free proline levels (49.9-fold, P < 0.001) that were correlated with diffusive resistance (seconds per centimeter). Five other FAAs increased, and the amounts of total free essential (for insect growth and development) amino acids and total FAAs also increased (P < or = 0.05). Cotton grown in 50% shade accumulated significantly more free arginine than control plants. In a small-plot weed competition assay, four FAAs increased and three FAAs decreased in association with weed competition, but because free proline levels were not altered and free arginine levels increased, other stresses aside from water deficit, possibly including shading by tall weeds, appear to have caused the changes. In a small-plot kaolin particle film assay, five FAAs were lower in cotton foliage sprayed weekly with kaolin. Because free proline was unaffected and free arginine was lower, it is possible that kaolin's reflectivity heightened light reception. The responses of free proline and arginine to the treatments used in these assays demonstrate that types and degrees of some stresses to cotton can be characterized by accumulations of certain FAAs. The study also demonstrates how some FAA levels can indicate degrees of cotton stress resulting from weed competition and from kaolin particle film application. Porometry and leaf water potential measurements assisted in corroborating some findings of the study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call