Abstract

Rodent models are invaluable to understanding health and disease in many areas of biomedical research. Unfortunately, many models suffer from lack of phenotype reproducibility. Our laboratory has shown that differences in gut microbiota (GM) can modulate phenotypes of models of colon cancer and inflammatory bowel disease. We and others have also shown that a number of factors associated with rodent research, including vendor, cage system, and bedding can alter GM. The objective of this study was to expand these studies to examine the effect of additional bedding materials and methods of water decontamination on GM diversity and composition. To this end, Crl:CD1 (ICR) mice were housed on corn cob or compressed paper chip bedding and provided water that was decontaminated by four different methods: autoclaving with reverse osmosis, autoclaving with hydrochloric acid, autoclaving with sulfuric acid, and autoclaving alone. Feces was collected at day 0, and at day 28 (endpoint), fecal and cecal samples were collected. DNA was extracted from samples, amplified by PCR using conserved bacterial primer sets and subjected to next generation sequencing. Sequence data were analyzed using Qiime and groups were compared using principal coordinate analysis (PCoA) and permutational multivariate analysis of variance (PERMANOVA). Two factor PERMANOVA of cecal GM data revealed significant changes when comparing bedding and water decontamination methods, while no significant effects were noted in the fecal GM data. Subsequent PERMANOVA and PCoA of cecal data revealed that several combinations of bedding and water decontamination methods resulted in differing GM, highlighting the complexity by which environmental factors interact to modulate GM.

Highlights

  • In recent years there has been a substantial increase in studies focusing on the microorganisms present in the gastrointestinal tract (GIT)

  • The most common method used was reverse osmosis followed by acidification with hydrochloric acid

  • Due to barrier restrictions within the vivarium in which these studies were conducted, water received by all groups was autoclaved, while certain mice received water that was purified via reverse osmosis (RO) or acidified via hydrochloric acid (HCl) or H2SO4

Read more

Summary

Introduction

In recent years there has been a substantial increase in studies focusing on the microorganisms present in the gastrointestinal tract (GIT). Rodent models have emerged as a highly valuable tool to determine the role of the GM in both health and disease. Several studies have demonstrated that the highly dynamic GM is influenced by a variety of environmental factors, and can in turn impact rodent model phenotypes [7]. The use of mouse models has been questioned due to the lack of reproducibility [8] These limitations have spurred efforts from several institutions such as the National Institutes of Health (NIH) to improve reproducibility of animal research [9]. Our laboratory has focused on the microbial composition of the GIT as an important contributing factor in phenotypic variability of rodent disease models [10, 11]. Given that the GM significantly impacts model phenotypes, these data substantiate the need to consider how different husbandry factors may influence the GM

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call