Abstract
In this study, the pore structure of magnesium potassium phosphate cement paste is investigated using mercury intrusion porosimetry. Several mix proportions, obtained by changing the magnesia-to-phosphate molar ratio (M/P) and the water-to-cement mass ratio (W/C) of the material, are involved. It is found that lower W/C and longer material age make the porosity lower and the pore structure finer. When the W/C is kept constant, both porosity and critical pore diameter are not monotonic functions of M/P, but the M/P of 6 gives the lowest porosity and the smallest critical pore diameter. Also, the M/P of 6 shows the highest compressive strength and the lowest intrinsic permeability. Based on the experimental results, empirical models describing the relations between the properties and pore structure parameters (porosity ϕ and critical pore diameter dc) of MKPC paste are developed. The compressive strength is inversely proportional to ϕ, and the intrinsic permeability is directly proportional to dc2ϕ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.